Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization.

نویسندگان

  • Maja Divkovic
  • Camilla K Pease
  • G Frank Gerberick
  • David A Basketter
چکیده

In view of the forthcoming European Union ban on in vivo testing of cosmetic and toiletry ingredients, following the publication of the 7th amendment to the Cosmetics Directive, the search for practical, alternative, non-animal approaches is gathering pace. For the end-point of skin sensitization, the ultimate goal, i.e. the development and validation of alternative in vitro/in silico assays by 2013, may be achieved through a better understanding of the skin sensitization process on the cellular and molecular levels. One of the key molecular events in skin sensitization is protein haptenation, i.e. the chemical modification of self-skin protein(s) thus forming macromolecular immunogens. This concept is widely accepted and in theory can be used to explain the sensitizing capacity of many known skin sensitizers. Thus, the principle of protein or peptide haptenation could be used in in vitro assays to predict the sensitization potential of a new chemical entity. In this review, we consider some of the theoretical aspects of protein haptenation, how mechanisms of protein haptenation can be investigated experimentally and how we can use such knowledge in the development of novel, alternative approaches for predicting skin sensitization potential in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Considerations for the Development of an Integrated Testing Strategy for Skin Sensitization

Non-animal test methods for skin sensitization have to consider the complex interactions of chemicals with the different parts of the skin immune system (Cumberbatch et al., 1992). A few chemicals act as prohaptens and can be converted to a hapten by oxidation, skin metabolism, or ultraviolet radiation (Karschuk et al., 2010). the hapten (parent or converted chemical) may penetrate the skin and...

متن کامل

Comparative modelling of 3D-structure of Geobacter sp. M21 (a metal reducing bacteria) Mn-Fe superoxide dismutase and its binding properties with bisphenol-A, aminotriazole and ethylene-diurea

Superoxide dismutase play important roles in iron-respiratory bacteria such as Geobacteraceae as an antioxidant defense, and probably an effective enzyme of electron transfer network. Regarding the application of iron-respiratory bacteria in environmental biotechnology particularly biodegradation and bioremediation, understanding the mechanism of inhibition/induction of superoxide dismutase by ...

متن کامل

MICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS

Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...

متن کامل

Inhibition of functional T cell priming and contact hypersensitivity responses by treatment with anti-secondary lymphoid chemokine antibody during hapten sensitization.

Recent studies have suggested a pivotal role for secondary lymphoid chemokine (SLC) in directing dendritic cell trafficking from peripheral to lymphoid tissues. As an extension of these studies, we examined the consequences of anti-SLC Ab treatment during Ag priming on T cell function in an inflammatory response. We used a model of T cell-mediated inflammation, contact hypersensitivity (CHS), w...

متن کامل

Inhibition of Microsome-Mediated Binding of Benzo (Α) Pyrene to "Dna By Cytosolic Reaction From Liver And Skin Rats in Cvitro

Purpose: The aim of this study was to evaluate the effect of age on the capacity of liver and epiderm of adult and weanging rats in transformation of Benzo (α) Pyrene. Materials and Methods: In a metabolic activiation assay system, cytochorome P-50 (from microsomal fraction) catalyses the formation of reactive epoxide of BaP which can then interact with exogenous DNA The capacity of cytochrome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Contact dermatitis

دوره 53 4  شماره 

صفحات  -

تاریخ انتشار 2005